If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2+1785t-18900=0
a = 5; b = 1785; c = -18900;
Δ = b2-4ac
Δ = 17852-4·5·(-18900)
Δ = 3564225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3564225}=\sqrt{225*15841}=\sqrt{225}*\sqrt{15841}=15\sqrt{15841}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1785)-15\sqrt{15841}}{2*5}=\frac{-1785-15\sqrt{15841}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1785)+15\sqrt{15841}}{2*5}=\frac{-1785+15\sqrt{15841}}{10} $
| 160+.50x=80+.90x | | 5t^2+1785-18900=0 | | -10+3j=3j-10 | | 4y+7-y=2+2y-5= | | -3/5g-1/3=-10/3 | | 3y^2-13y+9=0 | | 0=7w-7w | | √3x-6=-3 | | 4+2x=12+x | | x/3+8=-7 | | 5x+8-x=3+3x+8 | | 5(p+6)=3p+5 | | 2z-6=(z-1)÷2 | | -4.x=20 | | -9b-2=-10b | | -7(-5n+9)=11(n+3)-8 | | 9x+112=5 | | 3d-2d=19 | | 45(2)+45(2)+45=x | | -5x-8+12x+21=0 | | 7j=8j+6 | | 6x+4-x=2(x+1)10=2(x+1) | | 3c+2(c+3)=2c+5c+4 | | -8u=3-8u | | 2z-6=z-1÷2 | | 3(2x)+3=2x+7 | | 36(5)=x | | 9x+-112=5 | | 7+5x-(=3x+2) | | -8t-7=-8t | | Y+3=7(x+1) | | 1+3x8=25 |